controllerdata-lacity/city-employee-payroll-current-g9h8-fvhu
Loading...

Query the Data Delivery Network

Query the DDN

The easiest way to query any data on Splitgraph is via the "Data Delivery Network" (DDN). The DDN is a single endpoint that speaks the PostgreSQL wire protocol. Any Splitgraph user can connect to it at data.splitgraph.com:5432 and query any version of over 40,000 datasets that are hosted or proxied by Splitgraph.

For example, you can query the city_employee_payroll_current table in this repository, by referencing it like:

"controllerdata-lacity/city-employee-payroll-current-g9h8-fvhu:latest"."city_employee_payroll_current"

or in a full query, like:

SELECT
    ":id", -- Socrata column ID
    "employment_type", -- Employment Type - Full Time, Part Time, or Per Event
    "city_retirement_contributions", -- Estimated payments made by the City towards employee's retirement. 
    "regular_pay", -- Regular work hours payment
    "first_name", -- Employee first name
    "record_nbr", -- Unique number to identify an employee
    "gender", -- Gender as self-reported by employee
    "job_title", -- Job Title
    "fms_dept", -- Department Number in City Payroll System
    "last_name", -- Employee last name
    "ethnicity", -- Ethnicity as self-reported by employee
    "total_pay", -- Sum of regular, overtime and all other payments
    "mou_title", -- Title of Memorandum of Understanding
    "mou", -- Memorandum of Understanding
    "job_class_pgrade", -- Job Class and Pay Grade 
    "all_other_pay", -- Any payments other than Regular and Overtime. This includes bonuses, adjustments, and lump sum payouts. Examples of bonuses include Permanent, Longevity, and Temporary Bonuses. Lump Sum Pay includes significant one-time payouts due to retirement, lawsuit settlements, or other adjustments.
    "overtime_pay", -- Payments attributable to hours worked beyond regular work schedule
    "fms_department_title", -- Title of City Department
    "benefit_pay", -- City contribution for the employee's health care, dental care, vision care, and life insurance
    "pay_year", -- Tax year employee was paid. This is not Fiscal Year.
    "job_status" -- Employee's job status at the time the data was uploaded
FROM
    "controllerdata-lacity/city-employee-payroll-current-g9h8-fvhu:latest"."city_employee_payroll_current"
LIMIT 100;

Connecting to the DDN is easy. All you need is an existing SQL client that can connect to Postgres. As long as you have a SQL client ready, you'll be able to query controllerdata-lacity/city-employee-payroll-current-g9h8-fvhu with SQL in under 60 seconds.

Query Your Local Engine

Install Splitgraph Locally
bash -c "$(curl -sL https://github.com/splitgraph/splitgraph/releases/latest/download/install.sh)"
 

Read the installation docs.

Splitgraph Cloud is built around Splitgraph Core (GitHub), which includes a local Splitgraph Engine packaged as a Docker image. Splitgraph Cloud is basically a scaled-up version of that local Engine. When you query the Data Delivery Network or the REST API, we mount the relevant datasets in an Engine on our servers and execute your query on it.

It's possible to run this engine locally. You'll need a Mac, Windows or Linux system to install sgr, and a Docker installation to run the engine. You don't need to know how to actually use Docker; sgrcan manage the image, container and volume for you.

There are a few ways to ingest data into the local engine.

For external repositories, the Splitgraph Engine can "mount" upstream data sources by using sgr mount. This feature is built around Postgres Foreign Data Wrappers (FDW). You can write custom "mount handlers" for any upstream data source. For an example, we blogged about making a custom mount handler for HackerNews stories.

For hosted datasets (like this repository), where the author has pushed Splitgraph Images to the repository, you can "clone" and/or "checkout" the data using sgr cloneand sgr checkout.

Cloning Data

Because controllerdata-lacity/city-employee-payroll-current-g9h8-fvhu:latest is a Splitgraph Image, you can clone the data from Spltgraph Cloud to your local engine, where you can query it like any other Postgres database, using any of your existing tools.

First, install Splitgraph if you haven't already.

Clone the metadata with sgr clone

This will be quick, and does not download the actual data.

sgr clone controllerdata-lacity/city-employee-payroll-current-g9h8-fvhu

Checkout the data

Once you've cloned the data, you need to "checkout" the tag that you want. For example, to checkout the latest tag:

sgr checkout controllerdata-lacity/city-employee-payroll-current-g9h8-fvhu:latest

This will download all the objects for the latest tag of controllerdata-lacity/city-employee-payroll-current-g9h8-fvhu and load them into the Splitgraph Engine. Depending on your connection speed and the size of the data, you will need to wait for the checkout to complete. Once it's complete, you will be able to query the data like you would any other Postgres database.

Alternatively, use "layered checkout" to avoid downloading all the data

The data in controllerdata-lacity/city-employee-payroll-current-g9h8-fvhu:latest is 0 bytes. If this is too big to download all at once, or perhaps you only need to query a subset of it, you can use a layered checkout.:

sgr checkout --layered controllerdata-lacity/city-employee-payroll-current-g9h8-fvhu:latest

This will not download all the data, but it will create a schema comprised of foreign tables, that you can query as you would any other data. Splitgraph will lazily download the required objects as you query the data. In some cases, this might be faster or more efficient than a regular checkout.

Read the layered querying documentation to learn about when and why you might want to use layered queries.

Query the data with your existing tools

Once you've loaded the data into your local Splitgraph Engine, you can query it with any of your existing tools. As far as they're concerned, controllerdata-lacity/city-employee-payroll-current-g9h8-fvhu is just another Postgres schema.

Related Documentation:

Loading...