datos-gov-co/informe-de-pqrs-de-aguas-y-aguas-de-pereira-qyza-9ptr
Loading...

Query the Data Delivery Network

Query the DDN

The easiest way to query any data on Splitgraph is via the "Data Delivery Network" (DDN). The DDN is a single endpoint that speaks the PostgreSQL wire protocol. Any Splitgraph user can connect to it at data.splitgraph.com:5432 and query any version of over 40,000 datasets that are hosted or proxied by Splitgraph.

For example, you can query the informe_de_pqrs_de_aguas_y_aguas_de_pereira table in this repository, by referencing it like:

"datos-gov-co/informe-de-pqrs-de-aguas-y-aguas-de-pereira-qyza-9ptr:latest"."informe_de_pqrs_de_aguas_y_aguas_de_pereira"

or in a full query, like:

SELECT
    ":id", -- Socrata column ID
    "radicados", -- Número de solicitudes radicadas, es decir, los PQR´s que son presentados por los usuarios, de forma verbal, escrita en el centro de servicios o en la página web y son ingresados al sistema comercial.
    "tiempo_promedio_de_respuesta", -- Tiempo promedio de respuesta de las PQR`s
    "procedentes", -- Número de solicitudes a las que no  se accedió a lo solicitado por el Usuario
    "resueltos", -- Número de solicitudes resueltas, es decir, los atendidos a los que se les generó la respuesta en el mes o lapso de análisis.
    "categor_a", -- Categoría de las PQR`s correspondientes a Petición: Solicitud verbal o escrita con respecto a alguna información concerniente a los servicios prestados,  Queja: Solicitud verbal o escrita frente a la actuación de un funcionario de la empresa o la forma y condiciones en que presta el servicio,  Reclamo: Inconformidad verbal o escrita frente al cobro efectuado en la factura de servicios públicos, Recurso de reposición:  Solicitud verbal o escrita con el objeto de obtener revisión a una decisión anteriormente tomada en respuesta a una petición, queja o reclamo.
    "a_o", -- Año en que corresponde la Información
    "no_procedentes", -- Número de solicitudes a las que se accedió positivamente a las pretenciones del usuario y se reliquidó.
    "mes" -- Mes en el que corresponde la información
FROM
    "datos-gov-co/informe-de-pqrs-de-aguas-y-aguas-de-pereira-qyza-9ptr:latest"."informe_de_pqrs_de_aguas_y_aguas_de_pereira"
LIMIT 100;

Connecting to the DDN is easy. All you need is an existing SQL client that can connect to Postgres. As long as you have a SQL client ready, you'll be able to query datos-gov-co/informe-de-pqrs-de-aguas-y-aguas-de-pereira-qyza-9ptr with SQL in under 60 seconds.

Query Your Local Engine

Install Splitgraph Locally
bash -c "$(curl -sL https://github.com/splitgraph/splitgraph/releases/latest/download/install.sh)"
 

Read the installation docs.

Splitgraph Cloud is built around Splitgraph Core (GitHub), which includes a local Splitgraph Engine packaged as a Docker image. Splitgraph Cloud is basically a scaled-up version of that local Engine. When you query the Data Delivery Network or the REST API, we mount the relevant datasets in an Engine on our servers and execute your query on it.

It's possible to run this engine locally. You'll need a Mac, Windows or Linux system to install sgr, and a Docker installation to run the engine. You don't need to know how to actually use Docker; sgrcan manage the image, container and volume for you.

There are a few ways to ingest data into the local engine.

For external repositories, the Splitgraph Engine can "mount" upstream data sources by using sgr mount. This feature is built around Postgres Foreign Data Wrappers (FDW). You can write custom "mount handlers" for any upstream data source. For an example, we blogged about making a custom mount handler for HackerNews stories.

For hosted datasets (like this repository), where the author has pushed Splitgraph Images to the repository, you can "clone" and/or "checkout" the data using sgr cloneand sgr checkout.

Cloning Data

Because datos-gov-co/informe-de-pqrs-de-aguas-y-aguas-de-pereira-qyza-9ptr:latest is a Splitgraph Image, you can clone the data from Spltgraph Cloud to your local engine, where you can query it like any other Postgres database, using any of your existing tools.

First, install Splitgraph if you haven't already.

Clone the metadata with sgr clone

This will be quick, and does not download the actual data.

sgr clone datos-gov-co/informe-de-pqrs-de-aguas-y-aguas-de-pereira-qyza-9ptr

Checkout the data

Once you've cloned the data, you need to "checkout" the tag that you want. For example, to checkout the latest tag:

sgr checkout datos-gov-co/informe-de-pqrs-de-aguas-y-aguas-de-pereira-qyza-9ptr:latest

This will download all the objects for the latest tag of datos-gov-co/informe-de-pqrs-de-aguas-y-aguas-de-pereira-qyza-9ptr and load them into the Splitgraph Engine. Depending on your connection speed and the size of the data, you will need to wait for the checkout to complete. Once it's complete, you will be able to query the data like you would any other Postgres database.

Alternatively, use "layered checkout" to avoid downloading all the data

The data in datos-gov-co/informe-de-pqrs-de-aguas-y-aguas-de-pereira-qyza-9ptr:latest is 0 bytes. If this is too big to download all at once, or perhaps you only need to query a subset of it, you can use a layered checkout.:

sgr checkout --layered datos-gov-co/informe-de-pqrs-de-aguas-y-aguas-de-pereira-qyza-9ptr:latest

This will not download all the data, but it will create a schema comprised of foreign tables, that you can query as you would any other data. Splitgraph will lazily download the required objects as you query the data. In some cases, this might be faster or more efficient than a regular checkout.

Read the layered querying documentation to learn about when and why you might want to use layered queries.

Query the data with your existing tools

Once you've loaded the data into your local Splitgraph Engine, you can query it with any of your existing tools. As far as they're concerned, datos-gov-co/informe-de-pqrs-de-aguas-y-aguas-de-pereira-qyza-9ptr is just another Postgres schema.

Related Documentation:

Loading...